раздел акустики (См.
Акустика), в котором изучаются законы распространения звука на основе представления о звуковых лучах как линиях, вдоль которых распространяется звуковая энергия. Г. А. - предельный случай волновой акустики при переходе к бесконечно малой длине волны, поэтому методы Г. а. являются приближёнными и тем точнее отражают действительность, чем меньше длина волны. Основная задача Г. а. состоит в вычислении траекторий звуковых лучей. Наиболее простой вид лучи имеют в однородной среде, где они представляют собой прямые линии. Уравнения Г. а. имеют в основном такую же форму, как и уравнения геометрической оптики (См.
Геометрическая оптика). Для звуковых лучей справедливы те же законы отражения и преломления, что и для световых.
Методами Г. а. пользуются для практических приложений в самых различных областях акустики. Например, в архитектурной акустике (См.
Архитектурная акустика) свойство прямолинейности звуковых лучей даёт возможность весьма просто определять время реверберации (См.
Реверберация). Действие
Эхолотов и
Гидролокаторов основано на измерении времени пробега звуковых лучей до отражающего объекта и обратно. Лучевыми представлениями пользуются при расчёте звуковых фокусирующих систем. На основе законов Г. а. удаётся создать приближённую теорию распространения звука в неоднородных средах (например, в море, в атмосфере). Методы Г. а. имеют ограниченную область применения, т.к. самое понятие луча справедливо только в тех случаях, когда амплитуда и направление волны мало меняются на расстояниях порядка длины волны звука. В частности, для применения Г. а. требуется, чтобы размеры помещений или препятствий на пути звука были много больше длины волны звука. Если характерный для данной задачи размер становится сравнимым с длиной волны, то существенную роль начинает играть
Дифракция волн, которую Г. а. не охватывает.